Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diethyl 2,5-bis(3,4,5-trimethoxyphenyl)-furan-3,4-dicarboxylate 0.16-hydrate

Sheng-Li Hu ${ }^{\text {a,b }}$ and An-Xin Wu*
${ }^{\mathrm{a}}$ Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's
Republic of China

Correspondence e-mail:
chwuax@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.064$
$w R$ factor $=0.180$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{11} \cdot 0.16 \mathrm{H}_{2} \mathrm{O}$, the substituted benzene rings are twisted slightly away from the furan ring. The dihedral angle between the two benzene rings is $8.8(1)^{\circ}$. In the crystal structure, the molecules exist as $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded dimers.

Comment

Furan-3,4-dicarboxylic acid and its esters have received much attention due to their versatile applications. They have been used as starting materials in the synthesis of several bioactive natural products, such as argocic acid, aromaticin, biotin and perrilin. They have also been used in the synthesis of several pharmacologically useful molecules, in the preparation of complexes with rare earth metal ions and as potential dienes in Diels-Alder reactions for the synthesis of several novel heterocycles (Deshpande et al., 2002). In this paper, we report the crystal structure of the title compound, (I).

(I)

In compound (I), the two substituted benzene rings are twisted slightly away from the furan ring (Fig. 1). The C1-C6 and C14-C19 benzene rings form dihedral angles of 6.1 (2) and $7.5(1)^{\circ}$, respectively, with the furan ring. The dihedral angle between the two benzene rings is $8.8(1)^{\circ}$. The conformations of the two ester groups with respect to the furan ring are different (see Table 1 for torsion angles).

An intramolecular $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 10$ hydrogen bond is observed. The crystal packing shows that the molecules exist as $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded (Table 2) dimers. These dimers are interlinked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2).

Experimental

Compound (I) was synthesized according to the literature procedure of Wu et al. (1997). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution at room temperature.

Received 11 May 2005
Accepted 23 May 2005
Online 10 June 2005

Figure 1
A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Both disordered components of the ethyl group are shown.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{11} \cdot 0.16 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=547.42$
Monoclinic, $P 2_{1} / n$
$a=8.4402(7) \AA$
$b=22.1502(19) \AA$
$c=14.5043(12) \AA$
$\beta=95.835(2)^{\circ}$
$V=2697.6(4) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$
$\quad T_{\min }=0.949, T_{\max }=0.979$
14583 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.180$
$S=1.06$
5270 reflections
389 parameters
H -atom parameters constrained
$D_{x}=1.348 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2494
reflections
$\theta=2.7-23.8^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colourless
$0.50 \times 0.20 \times 0.20 \mathrm{~mm}$

5270 independent reflections
3426 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-27 \rightarrow 25$
$l=-16 \rightarrow 17$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0817 P)^{2}\right. \\
\quad+0.3534 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array} \text { ® }^{2} 0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
The molecular packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

C1-O1	$1.367(3)$	C17-O6	$1.386(3)$
C2-O2	$1.377(3)$	C18-O7	$1.368(3)$
C3-O3	$1.365(3)$	C20-O5	$1.414(4)$
C7-O1	$1.406(4)$	C21-O6	$1.398(4)$
C8-O2	$1.395(5)$	C22-O7	$1.421(4)$
C9-O3	$1.416(4)$	C23-O8	$1.202(3)$
C10-O4	$1.363(3)$	C24-O9	$1.466(3)$
C10-C11	$1.376(3)$	C26-O10	$1.193(3)$
C12-C13	$1.345(3)$	C26-O11	$1.319(3)$
C13-O4	$1.372(3)$	C27-O11	$1.480(7)$
C16-O5	$1.364(3)$		
O8-C23-O9	$124.3(2)$	O10-C26-C11	$127.0(2)$
O9-C23-C12	$111.7(2)$	O11-C26-C11	$111.7(2)$
C4-C5-C10-C11	$-171.6(3)$	C10-C11-C26-O10	$-7.6(5)$
C5-C10-C11-C26	$-5.2(6)$	C12-C11-C26-O10	$171.6(3)$
C23-C12-C13-C14	$-8.3(5)$	C10-C11-C26-O11	$172.4(3)$
C12-C13-C14-C19	$178.4(3)$	C12-C11-C26-O11	$-8.3(4)$
C13-C12-C23-O8	$-78.8(4)$	C25-C24-O9-C23	$-84.7(4)$
C11-C12-C23-O8	$96.2(4)$	C28-C27-O11-C26	$-91.5(7)$
C13-C12-C23-O9	$97.4(3)$	C28'-C27,-O11-C26	$110.9(6)$
C11-C12-C23-O9	$-87.6(3)$		

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 10$	0.93	2.13	$2.949(3)$	147
$\mathrm{C} 9-\mathrm{H} 9 C \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.57	$3.490(4)$	161
$\mathrm{C} 22-\mathrm{H} 22 A \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.59	$3.510(4)$	160
$\mathrm{C} 25-\mathrm{H} 25 B \cdots \mathrm{O}^{\mathrm{iii}}$	0.96	2.60	$3.540(4)$	166

Symmetry codes: (i) $-x,-y+2,-z+1$; (ii) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.

One of the ethyl groups is found to be disordered over two orientations. The occupancies of the disordered positions C27/C27 ${ }^{\prime}$ and C28/C28' were refined to 0.467 (12)/0.533 (12). Suitable restraints were applied to the $\mathrm{O}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ distances involving the disordered atoms. Water atom O12, with a partial occupancy of 0.16 [initially refined to $0.160(7)$], was found at a hydrogen-bonding distance of $2.78 \AA$ from O2. The assignment of this peak to a partially

organic papers

occupied water molecule is tentative, being based only on the crystallographic evidence; the water probably derives from the methanol solvent used for recrystallization. The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.97-0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for others. Each methyl group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. The H atoms of the water molecule were not located in the difference map.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Central China Normal University, the National Natural Science Foundation of China (grant No. 20472022) and the Hubei Province Natural Science Fund (grant Nos. 2004ABA085 and 2004ABC002) for financial support.

References

Bruker (2001). SMART (Version 5.618), SAINT (Version 6.02) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Deshpande, A. M., Natu, A. A. \& Argade, N. P. (2002). Synthesis, 8, 1010-1012.
Wu, A., Wang, M. \& Pan, X. (1997). Synth. Commun. 12, 2087-2091.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

